A Comparison of Physical Mapping Algorithms Based on the Maximum Likelihood Model
نویسندگان
چکیده
MOTIVATION Physical mapping of chromosomes using the maximum likelihood (ML) model is a problem of high computational complexity entailing both discrete optimization to recover the optimal probe order as well as continuous optimization to recover the optimal inter-probe spacings. In this paper, two versions of the genetic algorithm (GA) are proposed, one with heuristic crossover and deterministic replacement and the other with heuristic crossover and stochastic replacement, for the physical mapping problem under the maximum likelihood model. The genetic algorithms are compared with two other discrete optimization approaches, namely simulated annealing (SA) and large-step Markov chains (LSMC), in terms of solution quality and runtime efficiency. RESULTS The physical mapping algorithms based on the GA, SA and LSMC have been tested using synthetic datasets and real datasets derived from cosmid libraries of the fungus Neurospora crassa. The GA, especially the version with heuristic crossover and stochastic replacement, is shown to consistently outperform the SA-based and LSMC-based physical mapping algorithms in terms of runtime and final solution quality. Experimental results on real datasets and simulated datasets are presented. Further improvements to the GA in the context of physical mapping under the maximum likelihood model are proposed. AVAILABILITY The software is available upon request from the first author.
منابع مشابه
Comparison of different algorithms for land use mapping in dry climate using satellite images: a case study of the Central regions of Iran
The objective of this research was to determine the best model and compare performances in terms of producing landuse maps from six supervised classification algorithms. As a result, different algorithms such as the minimum distance ofmean (MDM), Mahalanobis distance (MD), maximum likelihood (ML), artificial neural network (ANN), spectral anglemapper (SAM), and support vector machine (SVM) were...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملTwo Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2003